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We study several examples of kinetically constrained lattice models using dynamically accessible volume as
an order parameter. Thereby we identify two distinct regimes exhibiting dynamical slowing, with a sharp
threshold between them. These regimes are identified both by a new response function in dynamically available
volume, as well as directly in the dynamics. Results for the self-diffusion constant in terms of the connected
hole density are presented, and some evidence is given for scaling in the limit of dynamical arrest.
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In nature, molecules, particles or other elements of a
nearly arrested system may sometimes stop moving without
any accompanying sharp change in the thermodynamic quan-
tities. Such systems have not crystallized, the free energy has
not been minimized, and there is no obvious order parameter
for the “transition.” This phenomenon of precipitous, and
apparently collective, loss of motion has been named “dy-
namical arrest” �1–5�, or jamming �6–8�. It is involved in the
“glass transition” �9� and even, apparently, gellation �10,11�.
In the field of glassification especially, very significant ad-
vances have been made in developing our understanding
�12,13�. In the scientific community there is an emerging
opinion that the many modes by which complex condensed
states are formed are all aspects of the process of dynamical
arrest.

We have sought a fundamental theoretical approach to
dynamical arrest �2,3� based on a physical order parameter to
describe the vicinity of dynamical arrest, keeping in mind the
potential to make direct contact with experiment. In particu-
lar, the advent of new experiments �14,15�, and new experi-
mental methods �16–18� being developed in colloidal and
soft matter science, opens up the possibility to directly con-
nect observation of particle configurations and their fluctua-
tions to suitably framed theoretical concepts. We have iden-
tified dynamically available volume �DAV� �2�, the ensemble
of physical space available to particle dynamics, as a pos-
sible order parameter. Its use has been illustrated in a recent
study of certain lattice models that exhibit dynamical arrest
�2,3,19� and has been considered in models of granular mat-
ter �6�.

In this paper, we highlight a new insight that for the
simple model systems we explore, and possibly more gener-
ally in nature, the geometry of available empty space of a
nearly arrested system has a profound impact on the nature
of the relaxation processes and the accompanying laws gov-
erning the onset of arrest. We propose that the onset of arrest
involves two qualitatively different regimes, both of which
appear to exhibit a degree of universality and scaling not
previously appreciated. Our observations are valid for a va-
riety of lattice types, and in both two and three spatial di-
mensions.

The models we study include kinetically constrained lat-
tice models introduced by Kob and Andersen �20� in which
particles may move to an adjacent empty site �a hole� if
surrounded by c or fewer neighbors, and if the movement is
reversible according to these same rules. Vacancies are
empty sites into which no adjacent particle can move. A
dynamical arrest transition occurs as a function of increasing
particle density, system size, spatial dimensionality d, and
constraints c.

At moderate densities a particle that moves into a hole
typically generates a new hole that may be used for a subse-
quent motion. By such sequential motions, all particles in the
system may be moved beginning with such a �“connected”�
hole. At high density many �“disconnected”� holes are caged
by a continuous boundary of particles that cannot be broken
by particle rearrangements inside the boundary �e.g., in the
square-lattice KA model the boundary has at least a double
row of particles of rectangular shape�. Each particle on this
boundary is blocked because it cages, and is caged by, its
neighbors. In our previous work we deemed disconnected
holes irrelevant for the long length and time scale transport
coefficients, and the connected holes �of density �c� become
the natural order parameter �2�. Subsequently �3� it has be-
come apparent that, asymptotically close to final arrest �in
the lattice models, for �=1� this is equivalent, via the rela-
tion �c=1/�d, to relating the transport coefficients to the
bootstrap length � �21,22�.

Connected and disconnected hole densities can be esti-
mated by numerical simulation, or by theoretical approaches
�3�—in some two-dimensional models they can be calculated
exactly �19�. The total hole density �t is a sum of the con-
nected �c and disconnected �d hole densities, and �c is plot-
ted for c=d=2 KA in Fig. 1 �c=d=3 KA in the inset�. Al-
though the results shown here for the connected hole
densities, or equivalently, the bootstrap length �d=1/�c cor-
respond to bootstrap simulations for system sizes beyond any
previously computed, it is important to note that they remain
far too small �3,19� to be described by simple �exact�
asymptotic approximations �23�.

The connected hole density is the order parameter of the
dynamical system and determines the transport coefficients.
The response of the dynamical system to creation of a hole
may be calculated from the derivative �essentially a response
function for hole creation� �c=��c /��t, plotted as a function*Electronic address: aonghus@fiachra.ucd.ie
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of density for the c=d=2 KA model in Fig. 2. The result is
striking—we find a threshold �“transition”� density below
which new holes automatically become connected �and
therefore contribute to diffusion� and above which nearly all
holes are trapped within extended cages.

To the low density �“unstable”� side of the transition a
new hole is typically close to an existing connected hole, and
therefore likely also to be connected. More holes lead to
further mobility, and the system is termed unstable. How-
ever, this mechanism also implies that dynamical connected-
ness, formerly defined only in relation to phase space �the
possibility to move all particles from a given initial condi-
tion�, is strongly associated with geometrical aspects of a
network of connected holes in this regime.

To the high density �“metastable”� side of the transition,
creation of a new hole typically leads to a rattler, or discon-
nected hole due to caging. Existing connected holes are now
dispersed sufficiently far apart that they provide no assis-
tance to a new hole.

The small peak in �c �at �c
*� is considered the onset of this

transformation of phase space, and the peak of the second
derivative, �c=�2�c /��t

2, an effective threshold at which the
system may be deemed to have made a “transition” in dy-

namics �see inset to Fig. 2�. In that inset we show that a
similar reorganization of phase space is observable in models
with different sets of kinetic constraints, symmetry of lattice,
and spatial dimensionality. It should be emphasized that it
has so far been difficult to quantitatively relate this restruc-
turing of phase space, and the change in dynamical pro-
cesses, to simple static concepts of connectedness of vacancy
and hole networks, though attempts continue �24�. On the
contrary, for each of the different models described in this
inset there are quite different spatially connected networks,
while the dynamical phenomenon is quite general. Note care-
fully that the connected hole density contains information on
the potential temporal evolution of the system. We now con-
sider the important step in understanding the geometrical as-
pects involves the concept of response functions. These are
defined one level removed from the specific rules of the
model itself that capture the spatio-temporal connectedness
of phase space. This approach is expected to be more appro-
priate also in attempts to generalize to the continuum.

We conclude there are likely two quite distinct dynami-
cally slowed regimes on approach to arrest, possessing quali-
tatively different spatio-temporal or dynamical relaxation
processes, different laws for the diffusion constant, and non-
linear response functions. There is ample anecdotal experi-
mental information for differing dynamical regimes, and pos-
sibly differing types of law, but hitherto there has been no
clear formulation of the underlying ideas. We are in a posi-
tion to check this explicitly in the dynamics of these models.
Note, however, that the strength of the calculations above are
that they are �or may be made� essentially exact, whereas the
dynamics calculations are lengthy with more limited reliabil-
ity. We shall now establish the existence of two different
regimes for these models by exploring different aspects of
the dynamics.

The mean squared distances traveled by particles �r�t�2�
are computed as usual �2�, and the diffusion constants D
calculated from the long-time diffusivity �r�t�2�=2dDt �see
Fig. 3�. Having computed the relation between the connected
hole density and particle density we may eliminate the latter
and plot the diffusion constant in terms of the order param-
eter, �c. It is known that the connected hole density fails to
reach a simple asymptotic form in any density range acces-
sible to computers �3,19,25–28�. Indeed, in the regimes we

FIG. 1. Total ��t� and connected ��c� hole density for the 2D and
3D �inset� Kob-Andersen model-largest length corresponding to �
=105 for 2D and �=103 for 3D.

FIG. 2. �c=��c /��t for d=2 KA model. Also shown are
−��c /�� ��� and −��t /�� ���. The inset shows �c=�2�c /��t

2 for
cubic KA c=3 ���, fcc KA c=6 ���, and KA c=d=2 ���.

FIG. 3. Diffusion constants for 2D and 3D �inset� for KA.
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discuss, there is a difference of several orders of magnitude
from the asymptotic form that is usually assumed. Therefore,
in writing the diffusion constant in terms of the connected
hole density �or dynamical correlation or bootstrap length� it
is important to use results that are appropriate to the density
regime under consideration.

For moderate density we recover the known �2� quadratic
law D=��c

2, �� is a model-dependent effective rate constant�
for different models, rules sets, and spatial dimensions. In
that regime �c and � �and therefore D and �� are connected
by a power law. However, at higher densities, for those mod-
els that have been explored beyond the “transition,” there is
a sharp change of slope and a new law for the diffusion
constant, D=��c

z �z noninteger�. In that regime the hole den-
sity �and thereby diffusion constant� is connected to particle
density via an exponential-like decay, though the detailed
form is subtle �3�. In each case we have marked that value of
particle density at which the unstable-to-metastable transi-
tion takes place based on available volumes. Examples are
given for two- and three-dimensional KA models, but similar
phenomena are present in several other lattice types, and
kinetic constraint sets. For the three-dimensional cubic lat-
tice the crossover is on the edge of the presently accessible
length and time scales.

One should not be complacent about quantitative treat-
ment of this high density limit as, for example, expressed in
the �effective� exponents z, which may contain a slowly
varying density dependence. The fact that the diffusion con-
stants are derived from some of the longest simulations and
large system sizes is no reassurance; the dangers of interpre-
tation associated with the �related� subtle asymptotic phe-

nomena in the bootstrap percolation problem where system
sizes far beyond current computation fail to reach asymptotic
laws is sufficient warning �3,19,23,29�. Here we will seek to
clarify the distinct physical relaxation processes. The true
asymptotics may have to wait for developments in dynamics
that mirror those that have taken place recently in the boot-
strap problem.

Amongst the most striking way to illustrate the conse-
quences in dynamics of the transition described in Fig. 2 is to
represent the spatio-temporal processes themselves visually.
Thus in Fig. 4 we illustrate qualitatively different dynamics
of unstable and metastable regimes from several models us-
ing two representative densities on either side of the geo-
metrical transition.

The examples correspond to c=d=2 KA and KA modified
and c=6, fcc KA models �the c=2 KA modified model is
identical to the c=2 KA model with the added restriction that
when we consider a move, any of the two vacant neighbors
of the particle must be second neighbors to each other�. In
each case the particles which have moved after some time
are shown in their initial positions. We have explored many
examples, and found the phenomena we describe to be quite
general. In the unstable regime motion spreads rapidly in a
concerted manner, with ample pathways for configurational
relaxation arising from implied networks of connected holes.
At higher particle densities, the available volume disconnects
�“de-percolates”�, leading to the metastable regime. There
the pathways are quite different; the motion is much slower
and mediated by “droplets” within which connected holes
mobilize the particles with the assistance of a network of
vacancies. These pictures, illustrating the mechanisms by

FIG. 4. �Color online� Sample configurations of simulations of different models in the unstable regimes �upper panels� and metastable
regimes �lower panels�. We show only the particles that have moved after some time. The patterns in the upper panels develop almost
immediately, while those on the bottom are essentially unchanged after many millions of MCS. These give a pictorial representation of how
dynamically accessible volume is delocalized in the system, and thereby characterize the nature of the relaxation processes in the two
regimes. In the unstable regime spinodal-like waves spread throughout the system, while in the metastable system movement initiates in
localized droplets, and spreads slowly from those �rare� seeds.
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which dynamically available volume is delocalized and con-
figurational relaxation occurs, are quite consistent with the
understanding of the two regimes arising from the suscepti-
bility ��c� alone, affirming the value and link between dy-
namics, and static averages in available volumes, based on
bootstrap processes.

We end by noting that the metastable regime appears to
exhibit a characteristic time, and a degree of scaling, on ap-
proach to true dynamical arrest. Thus, in Fig. 5 we show the
scaled curves, and in the inset the equivalent crossover time
��� at which the system becomes diffusive. The scaling be-
havior, and the requirement for appropriate short- and long-
time behavior, leads us to write �r2�= t2�f�t /�� with f�x�
�const �small x� and f�x��x	 �large x�. Here � is an expo-
nent reflecting the subergodic nature of the system up to the

crossover time �30�. The two asymptotic behaviors match at
the crossover time, leading to R2=D�, R2=�2�, and therefore
D��2�−1. For large density the connected hole density is
written in terms of the bootstrap length, and therefore we
finally obtain the law, D��c


 with 
=−�2�−1� /�d. From
the cross-over data we estimate the exponent 
=1.7, in good
agreement with direct measurements, and in accord with re-
cent studies of a similar model, the two-vacancy assisted
triangular lattice gas �31�. The uncertainties of using cross-
over data are considerably larger than the direct measure-
ment of the exponent from the diffusion constant data above
in Fig. 3, but the routes are entirely independent, and there-
fore valuable in the context of the present uncertainties about
finite size dependence. We conclude that it is possible that
the cascade of cages and partial cages determining the sub-
ergodic behavior provides a set of scalable “traps,” and
thereby a collapse of the dynamics data as outlined above.

In summary, we propose the existence of two regimes of
near-arrested dynamics with a transition between them
driven by the underlying geometry of available volume. The
geometrical properties of this empty space are not simple,
but are characterized by a new response function. The two
regimes possess different relaxation processes, leading to dif-
ferent dependencies of the diffusion constant on density. That
change in the diffusion constants could, for some cases, be so
dramatic to be mistaken for the dynamical arrest itself. One
would expect to be able to observe the geometrical transition
in direct imaging experiments, and its consequences via new
experimental methods that can probe long-time and long-
length-scale dynamics in colloidal and nano-particle science.
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